
PrivApprox’s Privacy Analysis and Proofs

Do Le Quoc†, Martin Beck†, Pramod Bhatotia∗

Ruichuan Chen‡, Christof Fetzer†, and Thorsten Strufe†
†TU Dresden ∗The University of Edinburgh ‡Nokia Bell Labs

In this report, we present the privacy analysis and proofs of PRIVAPPROX sys-
tem [8]. PRIVAPPROX is designed for privacy-preserving stream analytics on dis-
tributed users’ private dataset. The system consists of four main components: clients,
proxies, aggregator, and analysts. At a high-level, the system works as follows: a
query published by an analyst is distributed to clients via the aggregator and prox-
ies. Clients answer the analyst’s query locally over the users’ private data using a
privacy-preserving mechanism. Clients’ answers are transmitted to the aggregator via
anonymizing proxies. The aggregator aggregates received answers from the clients to
provide privacy-preserving stream analytics to the analyst.

Before we explain in details the privacy analysis and proofs of PRIVAPPROX, we
present the system model assumed in this system.

1 System model

1.1 Threat model
Analysts are potentially malicious. They may try to violate the PRIVAPPROX privacy
model; i.e., de-anonymize clients, build profiles through linkage of requests and an-
swers, or de-randomize (remove added noise from) the answers.

Clients are also potentially malicious. They could generate false or invalid re-
sponses to distort the query result sent to the analyst. However, we do not defend
against Sybil attacks [3], which is beyond the scope of this work [10].

Proxies are also assumed to be potentially malicious. They may transmit messages
between clients and the aggregator in contravention of the system protocols. PRIVAP-
PROX has at least two proxies, while we assume that also at least two proxies do not
collude with each other.

The aggregator is assumed to be Honest-but-Curious (HbC): the aggregator faith-
fully conforms to the system protocol, but may try to exploit the information about
clients. The aggregator does not collude with any proxy, nor the analyst.

Finally, we assume that all end-to-end communications use authenticated and con-
fidential connections (are protected by long-lived TLS connections), and no system
component could monitor all network traffic.

1

1.2 Privacy model
Privacy properties of PRIVAPPROX include: (i) zero-knowledge privacy, (ii) anonymity,
and (iii) unlinkability.

All aggregate query results in the system are independently created under zero-
knowledge privacy guarantees. The chosen privacy metric zero-knowledge privacy [6]
builds upon differential privacy [4] and provides a tighter bound on privacy guarantees
compared to differential privacy. Informally, zero-knowledge privacy states that essen-
tially everything that an adversary can learn from the output of an zero-knowledge pri-
vate mechanism could also be learned using aggregate information. Anonymity means
that no system components can associate query answers or query requests with a spe-
cific client. Finally, unlinkability means that no system component can join any pair of
query requests or answers to the same client, even to the same anonymous client.

2 Proofs

2.1 Zero-knowledge privacy
We show that PRIVAPPROX achieves εzk-zero-knowledge privacy and prove a tighter
bound for εdp-differential privacy, than what generally follows from zero-knowledge
privacy [6]. The basic idea is that all data from the clients is already differentially
private due to the use of randomized response. Furthermore, the combination with
pre-sampling at the clients makes it zero-knowledge private as well. Following the
privacy definitions, any computation upon the results of differentially, as well as, zero-
knowledge private algorithms is guaranteed to be private again.

In the following paragraphs we show that:

• Independent and identically distributed (IID) sampling decomposes easily and is
self-commutative. See Lemma 2.1.

• Sampling and randomized response mechanisms commute. See Lemma 2.2.

• Pre-sampling and post-sampling can be traded arbitrarily around a randomized
response mechanism. See Corollary 2.3.

• A εzk-zero-knowledge privacy bound for PRIVAPPROX system. See Theorem 2.4

• A εdp-differential privacy bound for PRIVAPPROX system. See Theorem 2.5

• Our differential privacy bound is tighter than the general differential privacy
bound derived from a zero-knowledge private algorithm. See Proposition 2.6.

Intuitively, differential privacy limits the information that can be learned about any
individual i by the difference occurring from either including i’s sensitive data in a dif-
ferentially private computation or not. Zero-knowledge privacy on the other hand also
gives the adversary access to aggregate information about the remaining individuals
denoted as D−i. Essentially everything that can be learned about individual i can also
be learned by having access to some aggregate information upon D−i.

2

Let San() be a sanitizing algorithm, which takes a database D of sensitive at-
tributes ai of individuals i ∈ P from a population P as input and outputs a differentially
private or zero-knowledge private result San(D). For brevity, we write SanA(D) for
the output of the adversary A with arbitrary external input z and access to San(D).
Similarly, we omit the explicit usage of the external information z as input to the
simulator S, as well as the total size of the database. See [5] Definition 1 and 2 for
the extended notation. Let O ⊆ Range(SanA) be any set of possible outputs. εdp-
differential privacy can be defined as

Pr[SanA(D) ∈ O] ≤ eεdp · Pr[SanA(D−i) ∈ O] (1)

while εzk-zero-knowledge privacy is defined as

Pr[SanA(D) ∈ O] ≤ eεzk · Pr[S(T (D−i), |D|) ∈ O]. (2)

Before proving the desired properties, we need to introduce some notation. Let
D = {ai} be a database of sensitive attributes of individuals i ∈ P. For ease of
presentation and without loss of generality we restrict the individual’s sensitive at-
tribute to a boolean value ai ∈ {0, 1} and D = ai′ for all i′ ∈ P. Furthermore, let
D(D) = {U : U ⊆ D} be the super-set of all possible databases and Sam(D,u) : -
D(D)× (0, 1)→ D(D) be a randomized algorithm that i.i.d. samples rows or individ-
uals with their sensitive attributes from database D with probability s without replace-
ment. Let San(D, p, q) : D(D) × (0, 1) × (0, 1) → D(D) be a two-coin randomized
response algorithm that decides for any individual i′ in database D with probability p
if it should be part of the output. If it is not included in the output, the result of tossing
a biased coin (coming up heads with probability q) is added to the output.

Lemma 2.1. (Decompose and commute sampling) Let s = uv with s, u, v ∈ (0, 1)
being sampling probabilities for a sampling function Sam(). It follows that Sam()
can be composed and decomposed easily and is self-commutative.

Sam(D, s) ≈ Sam(Sam(D,u), v)

≈ Sam(Sam(D, v), u).

Proof. Let Samu, Samv be sampling algorithms that sample rows i.i.d. from a database
with probability u and v respectively. By applying Samu(D), any row in D has prob-
ability u of being sampled. The probability for any row in D being sampled by Samv

is equivalently v. Using function composition the probability for any row in D being
sampled by Sams = (Samu ◦ Samv)(D) is

s = uv. (3)

From multiplication being commutative (u · v = v · u) follows that Samu and
Samv commute, that is Samu ◦Samv = Samv ◦Samu. This is true for deterministic
functions and can easily be extended to randomized functions described as random
variables, as random variables are commutative under addition and multiplication. For
ease of presentation and without loss of generality we keep the notion of functions
instead of random variables. Let Sams(D) = Sam(D, s) be a sampling function that

3

samples rows i.i.d. from a given databaseD with probability s. Decomposing sampling
function Sams() with probability s into two functions with probabilities u and v follow
from Equation (3). It also follows that two sampling functions with probabilities u, v
can be composed into a single sampling function with sampling probability s.

Lemma 2.2. (Commutativity of sampling and randomized response) Given a sam-
pling algorithm Sam() and a randomized response algorithm San(), the result of
the pre-sampling algorithm Fpre(D, s, p, q) = San(Sam(D, s), p, q) is statistically
indistinguishable from the result of the post-sampling algorithm Fpost(D, s, p, q) =
Sam(San(D, p, q), s). It follows that sampling and randomized response commute
under function composition: Sam ◦ San = San ◦ Sam.

Proof. For any individual i having ai ∈ D we have to consider eight different possible
cases. In case the sampling algorithm Sam() decides to not sample i, it obviously
doesn’t matter if it gets removed before the randomized response algorithm is run of
afterwards. We thus condition on Sam() to include i in the output.

1. Let us first consider the case that San() outputs the real value for individual i.
As Sam() is fixed to output i independent of its value, there is no difference
between Fpre and Fpost.

2. In case San() outputs a randomized answer Sam() again is not influenced by
the outcome of any of the coin tosses and passes i along to the output. This is of
course also independent of the actual randomized result.

This concludes the proof that sampling and randomized response are independent re-
garding their order of execution and thus commute.

Corollary 2.3. (Arbitrary sampling around randomized response) Let s = uv for
s, u, v ∈ (0, 1) be sampling probabilities for a sampling function Sam() and San()
be a two-coin randomized response mechanism with probabilities (p, q). Sampling can
be arbitrarily traded between pre-sampling and post-sampling around the randomized
response mechanism San.

San(Sam(D, s), p, q) ≈ Sam(San(Sam(D,u), p, q), v)

≈ Sam(San(D, p, q), s).

Proof. This follows directly from applying Lemma 2.1 and Lemma 2.2.

We will now give a bound on εzk for the privacy of PRIVAPPROX system under the
zero-knowledge privacy setting, as well as derive a tighter bound for (εdp)-differential
privacy, than the bound that generally follows from zero-knowledge privacy.

Theorem 2.4. (εzk-zero-knowledge privacy) Let A be an algorithm that applies sam-
pling with probability s, together with a two-coin randomized response algorithm using
probabilities (p, q). A is εzk-zero-knowledge private with

εzk = ln

(
s
2− s
1− s

(
p+ (1− p) q
(1− p) q

)
+ (1− s)

)
. (4)

4

Proof. From [5], Theorem 1 follows that a (k, εrr)-crowd-blending private mechanism
combined with a pre-sampling using probability s achieves ε-zero-knowledge privacy
with

εzk = ln

(
s ·

(
2− s
1− s

eεrr
)
+ (1− s)

)
.

We omit the description for the additive error δ, which can be derived equivalently
from [5] Theorem 1. Following Proposition 1 from [5] every εrr-differentially pri-
vate mechanism is also k, εrr-crowd-blending private, thus randomized response be-
ing an εrr-differentially private mechanism, also satisfies (k, εrr)-crowd-blending pri-
vacy with k = 1. Combining both results with Equation 8 in the technical report [8])
εrr = ln

(
p+(1−p)q
(1−p)q

)
gives an

εzk = ln

(
s ·

(
2− s
1− s

(
p+ (1− p)q
(1− p)q

))
+ (1− s)

)
zero-knowledge private mechanism for randomized response combined with pre-sam-
pling. Using Corollary 2.3 we can replace pre-sampling with a combination of pre- and
post-sampling (with probabilities u, v respectively and s = u · v) while keeping εzk
fixed. We thus have

εzk = ln

(
uv

2− uv
1− uv

(
p+ (1− p) q
(1− p) q

)
+ (1− uv)

)
.

If we do not aim at achieving zero-knowledge privacy, we can fall back to differ-
ential privacy using the result from [6], Proposition 3, which states that any ε-zero-
knowledge private algorithm is also 2ε-differentially private. Using the results from
sampling secrecy [7], which achieve a privacy boost by applying pre-sampling before
using a differentially private algorithm, we derive a tighter bound for differential pri-
vacy, than what follows generally from zero-knowledge privacy.

Theorem 2.5. (εdp-differential privacy) Let A be an algorithm that applies sampling
with probability s, followed by a two-coin randomized response algorithm using prob-
abilities (p, q). A is εdp-differentially private with

εdp = ln

(
1 + s

(
p+ (1− p) q
(1− p) q

− 1

))
. (5)

Proof. We use the result from [1], Proof of Lemma 3, which bounds an εrr-differential
private algorithm combined with pre-sampling using probability s by εdp = ln(1 +

s(exp(εrr) − 1)). Let εrr = ln
(
p+(1−p)q
(1−p)q

)
be the bound derived for randomized

response, we get

εdp = ln

(
1 + s

(
p+ (1− p) q
(1− p) q

− 1

))
.

5

Applying Corollary 2.3 we derive an εdp bound for the combination of pre-sampling,
randomized response and post-sampling of:

εdp = ln

(
1 + (uv)

(
p+ (1− p) q
(1− p) q

− 1

))
.

Proposition 2.6. (Tighter εdp-differential privacy bound) The bound εdp for differential
privacy of a sampled randomized response system derived in Theorem 2.5 is tighter
than εzk-differential privacy, which is again tighter than the general 2εzk-differential
privacy bound that follows from εzk-zero-knowledge privacy [6].

We directly proof Proposition 2.6 by comparing εdp from Theorem 2.5 with εzk
from Theorem 2.4. As we want to prove a bound that is tighter than ε, we drop
the factor of 2. This is possible because a ε-differentially private algorithm is also
2ε-differentially private. If we succeed in proving a bound tighter than ε, then 2ε-
differential privacy is trivially fulfilled.

Proof. Proposition 3 from [6] states that every ε-zero-knowledge private algorithm is
also 2ε-differentially private. Using Theorem 2.4 we get a εzk-differentially private
system with 2εzk = 2ln

(
s 2−s1−s

(
p+(1−p)q
(1−p)q

)
+ (1− s)

)
. Theorem 2.5 proves a bound

of εdp = ln
(
1 + s

(
p+(1−p)q
(1−p)q − 1

))
. Let eεrr = p+(1−p)q

(1−p)q . Putting together Theo-
rem 2.5, Theorem 2.4, Proposition 2.6 and Proposition 3 [6] we have:

ln

(
1 + s

(
p+ (1− p) q
(1− p) q

− 1

))
< ln

(
s
2− s
1− s

(
p+ (1− p) q
(1− p) q

)
+ (1− s)

)
s

(
p+ (1− p) q
(1− p) q

− 1

)
<

2− s
1− s

s

(
p+ (1− p) q
(1− p) q

− 1

)
s
(
e
εrr − 1

)
<

2− s
1− s

s
(
e
εrr − 1

)
1 <

2− s
1− s

As s ∈ (0, 1) is the sampling parameter with a minimal right side for smin = argmins∈(0,1)

(
2−s
1−s

)
=

0 the above inequality becomes 1 < 2, which holds and concludes the proof.

2.2 Relation of differential privacy and zero-knowledge privacy
Zero-knowledge privacy and differential privacy describe the advantage ε of an adver-
sary in learning information about individual i by using an output from an algorithm
San() running over database D containing sensitive information ai ∈ D of individual
i compared to using a result of a second — possibly different — algorithm San′() run-
ning overD−i. Zero-knowledge privacy is a strictly stronger privacy metric through the
additional access to aggregate information of the remaining database D−i compared to
differential privacy [6]. By intuition, as differential privacy is a special case of zero-
knowledge privacy and the adversary aims at maximizing its advantage, the advantage

6

1.0

2.0

3.0

4.0

5.0

6.0

7.0

 0 0.2 0.4 0.6 0.8 1

P
ri

v
a
c
y
 r

a
ti

o
 (

�

z
k
/�

d
p
)

Sampling fraction (s)

p = q = 0.1
p = q = 0.3
p = q = 0.5
p = q = 0.7
p = q = 0.9

Figure 1: Ratio of εzk
εdp

depending on the sampling parameter s for different values p
and q.

of an adversary in the zero-knowledge model is at least as high and possibly higher than
the advantage of an adversary in the differential privacy model: εzk ≥ εdp. Figure 1
draws the ratio εzk

εdp
between the zero-knowledge privacy level εzk and the differential

privacy level εdp given identical parameters p, q and s. Put differently, as the adversary
is allowed to do more in the zero-knowledge model, the privacy level is lower, which is
reflected by a higher εzk value compared to the differential privacy level εdp — given
identical system parameters.

2.3 Anonymity
We make the following assumptions to achieve the remaining two privacy properties:

(A1) At least two out of the n proxies are not colluding.

(A2) The aggregator does not collude with any of the proxies.

(A3) The aggregator and analysts cannot — at the same time — observe the commu-
nication around the proxies.

(A4) The adversary, seen as an algorithm, lies within the polynomial time complexity
class.

To provide anonymity, we require that no system component (proxy, aggregator,
analyst) can relate a query request or answer to any of the clients. To show the fulfill-
ment of that requirement we take the view of all three parties.

a) A proxy can of course link the received data stream to a client, as it is directly
connected. However, as the data stream is encrypted, it would need to have the plaintext
query request or response for the received data stream. To get the plaintext the proxy
would either need to break symmetric cryptography, which breaks assumption (A4),
collude with all other proxies for decryption, which breaks assumption (A1) or collude
with the aggregator to learn the plaintext, which breaks assumption (A2).

7

b) Anonymity against the aggregator is achieved by source-rewriting, which is a
standard anonymization technique typically used by proxies and also builds the basis
for anonymization schemes [2, 9]. To break anonymity the aggregator must be a global,
passive attacker, which means that he is able to simultaneously listen to incoming and
outgoing traffic of any proxy. This would violate assumption (A3). The other possi-
bility to bridge the proxies is by colluding with any of them — breaking assumption
(A2).

c) The analyst knows the query request, but doesn’t get to learn the single query
answers. He needs to collude with the aggregator, to see single responses. Thus the
problem reduces to breaking anonymity from the view of the aggregator. Collusion
with the aggregator and any proxy would break assumption (A2). Collusion with up to
n− 1 proxies reduces to breaking anonymity from the proxy view.

2.4 Unlinkability
Unlinkability is provided by the source-rewriting scheme as in anonymity. Breaking
unlinkability on any proxy is similar to breaking anonymity, as the proxy would need
to get the plaintext query. The aggregator only gets query results, but no source in-
formation, as this is hidden by the anonymization scheme. The query results sent by
the clients also do not contain linkable information, just identically structured answers
without quasi-identifiers. The view of the analyst doesn’t receive responses, so it must
collude with either a proxy or the aggregator, effectively reducing to the same problem
as described above.

References
[1] Differential privacy and the secrecy of the sample, Sept. 2009.

[2] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. Technical report, DTIC Document, 2004.

[3] J. R. Douceur. The Sybil Attack. In Proceedings of 1st International Workshop
on Peer-to-Peer Systems (IPTPS), 2002.

[4] C. Dwork. Differential privacy. In Proceedings of the 33rd International Collo-
quium on Automata, Languages and Programming, part II (ICALP), 2006.

[5] J. Gehrke, M. Hay, E. Lui, and R. Pass. Crowd-blending privacy. In Proceed-
ings of the 32th Annual International Conference on Advances in Cryptology
(CRYPTO), 2012.

[6] J. Gehrke, E. Lui, and R. Pass. Towards Privacy for Social Networks: A Zero-
Knowledge Based Definition of Privacy. In Theory of Cryptography, 2011.

[7] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith.
What Can We Learn Privately? SIAM J. Comput.

[8] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe. Privacy pre-

8

serving stream analytics: The marriage of randomized response and approximate
computing. https://arxiv.org/abs/1701.05403, 2017.

[9] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and
onion routing. IEEE Journal on Selected Areas in Communications, 1998.

[10] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y. Zhao. Defending
against sybil devices in crowdsourced mapping services. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys), 2016.

9

https://arxiv.org/abs/1701.05403

	System model
	Threat model
	Privacy model

	Proofs
	Zero/knowledge privacy
	Relation of differential privacy and zero/knowledge privacy
	Anonymity
	Unlinkability

